Theoretical simulations click here have recently predicted that a N-rich condition is beneficial for Mg incorporation in GaN and AlN [10, 11]. However, high V/III ratio was determined to be unfavorable for high-quality Al x Ga1 – x N crystal growth [13–16]. Thus, the dilemma between maintaining high V/III ratio to promote Mg incorporation
and maintaining low V/III ratio to ensure high crystal quality presents a long-standing challenge for deep UV optoelectronic devices. In this work, we proposed a method to solve this V/III ratio dilemma by periodically interrupting the AlGaN growth (using usual V/III ratio as the AlGaN growth) and by shortly producing an ultimate V/III ratio condition (extremely N-rich). First-principles simulations were utilized mTOR inhibitor to analyze the behavior of substituting Mg for Al and Ga in the bulk and on the Selleck HMPL-504 surface of Al x Ga1 – x N under different growth atmospheres and to demonstrate the mechanism for the preferred Mg incorporation. On the
basis of the analysis results, a modified surface engineering (MSE) technique that utilizes periodical interruptions under an extremely N-rich atmosphere was applied to enhance Mg effective incorporation by metalorganic vapor phase epitaxy (MOVPE). Significant Mg incorporation improvements in Al-rich Al x Ga1 – x N epilayer were achieved. Methods The first-principles total energy calculations based on density functional theory were performed by using the Vienna ab initio simulation package [17]. Pseudopotentials were specified by the projector augmented wave [18, 19] and by generalized gradient approximation [20]. Ga 3d electrons were treated as part of the valence band, and the plane
wave cutoff energy was set at 520 eV. Geometry optimizations were performed until the total energy converged to 1 meV. For the bulk calculations, a 2 × 2 × 4 supercell containing 64 atoms [7] and a 5 × 5 × 3 Monkhorst-Pack grid [21] of k-points were used. All atoms were allowed to relax Rapamycin chemical structure fully for energy minimization. For the surface calculations, we employed a 2 × 2 supercell with six Al x Ga1 – x N bilayers separated by a 13-Å wide vacuum region [22] and a 4 × 4 × 1 k-point mesh. The back side of the slab was saturated with hydrogen atoms of fractional charge. The three bottom Al x Ga1 – x N bilayers were fixed in the appropriate bulk-optimized configuration to simulate the growth surface, in which all the other layers was relaxed fully. The Mg-doped Al x Ga1 – x N samples were grown on (0001) sapphire substrates via MOVPE. Trimethylgallium (TMGa), trimethylaluminum (TMAl), bis-cyclopentadienylmagnesium (Cp2Mg), and ammonia (NH3) were used as precursors, and H2 was used as carrier gas. Buffer layers with a 20-nm low temperature AlN nucleation layer, a 1-μm high temperature AlN layer, and a graded composition AlGaN layer have been used for initial growth on sapphire.