Experiments with recombinant EBOV were approved by the Institutio

Experiments with recombinant EBOV were approved by the Institutional Biosafety

Committee (IBC) and performed in BSL4 containment at the Rocky Mountain Laboratories (RML), Division of Intramural Research (DIR), TGF-beta inhibitor National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), following standard operating procedures. TCID50 assays were performed by infecting Vero cells in 96-well format with a tenfold dilution series of samples, infecting 4 wells per sample and dilution step (for stock titrations 8 wells per sample and dilution step were infected). CPE-based TCID50 assays were read after 18 days, to ensure a definitive distinction between infected and uninfected wells even at higher dilutions. Luminescence-based TCID50 assays were read by measuring luciferase activity at the

indicated time points, as http://www.selleckchem.com/products/AZD2281(Olaparib).html described above. Wells were deemed positive when reporter activity was at least 1 log10 higher than in uninfected control samples and not more than 2 log10 lower than directly neighboring wells, to compensate for cross-talk between different dilution steps. To further eliminate the possibility of crosstalk between different samples, at least one column was left empty between these samples when measuring luciferase activity. Titers were calculated using the Spearman–Kaerber method (Wulff et al., 2012). For the luminescence-based direct titration (LBT) assay, 50 μl of undiluted and 1:1000 diluted unknown samples were used to infect Vero cells in 96-well format in a total volume of 100 μl, along with known virus standards (5 × 105, 5 × 104, 5 × 103, 5 × 102 TCID50/ml). All infections were done in triplicate. 48 h post-infection, luciferase activity ADP ribosylation factor was measured as described above, and a linear regression curve based on the virus standard samples was used to calculate

the titer of the unknown samples based on their luciferase activity. For testing of neutralizing antibodies, 100 TCID50 of rgEBOV-luc2 were incubated with the previously characterized neutralizing antibodies 133/3.16 or 226/8.1 or the non-neutralizing antibody 42/3.7 (Takada et al., 2003) at the indicated concentrations in a total volume of 100 μl in a 96-well plate. After 1 h, 2 × 104 Vero cells in 100 μl were added to each well. After 2 days luciferase activity was determined as described above. For testing of siRNAs, 293 cells at a confluency of ∼50% were transfected with the indicated amount of L-specific Dicer substrate siRNA (DsiRNA) duplex (5′-rGrArUrCrArArUrUrUrArUrArUrArCrArGrCrUrUrCrGrUrArCrArA-3′, 5′-rGrUrArCrGrArArGrCrUrGrUrArUrArUrArArArUrUrGrArTrC-3′; Integrated DNA Technologies) or control DsiRNAs (NC1 and DS Scrambled Neg, Integrated DNA Technologies). To this end, the DsiRNA was diluted in 5 μl Opti-MEM (Invitrogen; all amounts are per well), and 0.3 μl Lipofectamine 2000 (Invitrogen) in 5 μl Opti-MEM was added to the diluted DsiRNA.

In Experiment 2 (eye abduction during retention and retrieval) th

In Experiment 2 (eye abduction during retention and retrieval) the only significant reduction in spatial span was observed when memoranda were presented in the Temporal 40° Abducted condition, with no comparable drop or trend in the 20° Abducted condition. Considering the further absence of any effect of abduction in Experiment 3 (abduction during retrieval only), we argue these results offer strong support for oculomotor involvement during the maintenance of directly-indicated spatial locations in working memory. As outlined in the introduction,

previous studies have struggled to reliably decouple attentional processes from oculomotor control processes in VSWM. We propose the present study is the first to unambiguously demonstrate click here that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from any involvement of covert attention. This claim rests on the decoupling of oculomotor processes and attention that occurs when participants are placed in a 40° Abducted position and spatial memoranda are presented wholly in the temporal hemifield. Critically, participants can still see everything in the display and can covertly shift their attention within the

abducted hemifield, but are they physically unable Sirolimus to make any further eye-movements. It is only in this condition that spatial memory span is significantly reduced. This reduction cannot be explained by differences in the quality of sensory information between conditions, as previous studies have shown that eye-abduction does not reduce visual acuity (Ball et al., 2013 and Craighero et al., 2004). Given that our interpretation of these data rests on the decoupling of endogenous attention and saccade control, it is worth noting that there is substantial behavioral and neuropsychological evidence for this dissociation. For example, neuropsychological evidence supporting separation between the oculomotor system and attentional control comes from reported cases of patients with defective oculomotor control who are still Meloxicam able to covertly orient their attention (Gabay et al., 2010,

Rafal et al., 1988 and Smith et al., 2004). Smith et al. (2012) have also previously shown using an eye-abduction paradigm that numeric cues elicit covert endogenous shifts of attention to locations in the temporal hemispace even when they cannot become the goal of saccadic eye movements. In healthy participants, a series of studies by Klein and colleagues have shown that covert shifts of attention triggered by symbolic cues do not facilitate subsequent saccadic eye-movements (Hunt and Kingstone, 2003, Klein, 1980 and Klein and Pontefract, 1992). Furthermore, Belopolsky and Theeuwes, 2009b and Belopolsky and Theeuwes, 2012 have argued that endogenous attention associated with maintaining attention at a spatial location is independent from the preparation of an eye-movement to the same location.

As with the full dataset, it is difficult to determine the relati

As with the full dataset, it is difficult to determine the relative influence of different land use impacts on sedimentation because of high correlations between land use variables (Fig. 3) and a large proportion of model variance is associated with random effects by catchment (i.e. inter-catchment differences). With the best model containing both cuts_no_buf and cutlines_no_buf as fixed-effect variables (

Table 4), both forestry- and energy-related land use activities appear to cumulatively relate to rates of sedimentation. Few studies have previously examined the impact of natural gas extraction on watershed sediment Metabolisms tumor transfer. Measurements of sediment erosion from well pads in Texas ( Williams et al., 2008 and McBroom et al., 2012) and an examination of water quality data in Pennsylvania ( Olmstead et al., 2013) have all related elevated fluvial sediments to the presence of gas wells. We also explored the potential influence

of interdecadal climate change in our modeling of lake sedimentation in western Canada. The importance of extreme hydroclimatic events on episodic sediment transfer DNA Damage inhibitor is well established (e.g. Church et al., 1989), and many anomalous pulses of sedimentation in our study dataset have been attributed to specific floods (Spicer, 1999, Schiefer et al., 2001a and Schiefer and Immell, 2012). Contemporary climate change was proposed as an explanation for increasing sedimentation rates in some Urease of the undisturbed study lakes, but

no associated empirical relations were explored. Effects of climate change were hard to discern in the global review of lake sediment records by Dearing and Jones (2003) because of the compounding and dominant effect of land use. In relatively undisturbed lake catchments in upland areas of Europe, generally increasing trends in sedimentation have been attributed to the likely influence of climate change, but controlling climate attributes remain uncertain (Rose et al., 2011). None of these large-scale studies attempted to quantitatively relate lake sedimentation patterns with longer term climate change (only individual extreme events). Our stepwise analysis with mixed effects modeling included multiple variables describing climate change over the last half century (Table 1). Best models for the entire catchment inventory and the Foothills-Alberta Plateau subset included climate variables temp_open and temp_closed, respectively. The two temperature variables are highly correlated, and model fits are negligibly affected when they are interchanged. Increasing temperatures, both in the open- and closed-water seasons, can be associated with elevated autochthonous or allochthonous sedimentation by increasing aquatic and terrestrial productivity, as well as potentially increasing the proportion of precipitation falling as rain.

In both case studies the change in sedimentary style and dramatic

In both case studies the change in sedimentary style and dramatic increase in the rate of floodplain sedimentation can

be related to the agricultural history of the catchments; however, this change to a human-driven geomorphological system varies in date by at least 2300 years. Notebaert and Verstraeten (2010) comment that there is seldom proof of a “direct relationship” of accelerated alluviation with either climate or anthropogenic activity; however, this is bound to be the case at the regional level, but not if individual small catchments are used which have high resolution dating and independent vegetation histories as is the case here. Geomorphologists have recognised a Global discontinuity in Holocene alluvial stratigraphies from all continents, INCB024360 datasheet except Antarctica. However, this has been dated to the mid to late Holocene in the Old World and parts of the New World, and

to the period of European colonisation of other parts of the New World. In all these cases the principal, but not sole cause is arable agriculture. It is argued that this is likely to be an enduring signal as it exists well outside potentially future-glaciated areas and as sediment yields fall the sedimentary boundary will be preserved in river terraces due to channel incision. This will make a marked lithological and sedimentological check details difference between this terrace and earlier Pleistocene terraces which will also include a biological turnover with the appearance of new taxa, largely domesticates, and synanthropes. Discussions of the Anthropocene have to accommodate these data and this may have important implications Cytidine deaminase for the status and demarcation of the Anthropocene as a period in Earth System history. The authors very much thank N. Whitehouse, S. Davis, R. Fletcher, M. Dinnin and J. Bennett for assistance in the field and L. Ertl

for assistance with figure preparation. “
“Forest ecosystems in pristine, less managed, landscapes are often considered to be a natural reflection of resource limitations and species competition or facilitation; however, the footprint of ancient human activities and its influence on nutrient reserves should be considered when evaluating the nature and composition of contemporary ecosystems. The occurrence of open spruce (Picea abies L.)-lichen (Cladina spp.) forests in subarctic Sweden is one such ecosystem. This forest type was an enigma to plant scientists who considered these unique forests to be a natural phenomenon created by intrinsic edaphic and climatic limitations of the region ( Wahlgren and Schotte, 1928 and Wistrand, 1965). However, more recent analyses suggested that these forests may be a product of continual use of fire as a land management tool over a 2000–3000 year period ( Hörnberg et al.

, 2002a, DeLuca et al , 2002b and Zackrisson et al , 2004) Assum

, 2002a, DeLuca et al., 2002b and Zackrisson et al., 2004). Assuming Alpelisib concentration wildfires

consume approximately 30–60% of the total N in the O horizon ( Neary et al., 2005) (which in this case would be about 200 kg N ha−1), the annual contribution of N by feathermosses could have replenished this N loss in about 200 years (100 years of forest succession followed by 100 years of N2 fixation). Regular burning would have consumed the moss bottom layer ( Payette and Delwaide, 2003) and greatly reduced the presence of juniper ( Diotte and Bergeron, 1989 and Thomas et al., 2007) resulting in an un-surmountable loss of N, the loss of the predominant N source, and ultimately the loss of the capacity to support stand N demands (approximately 30 kg available N ha−1 yr−1) of a mature Scots pine, Norway spruce forest of ( Mälkönen, 1974). Reindeer do Olaparib cell line not eat feathermosses, thus their presence on the forest floor was likely of no value to reindeer herders and may have

been looked upon as a nuisance. Consequently, the use of fire to transform dwarf-shrub/moss dominated forests into lichen dominated heaths to provide reindeers with winter grazing land would rather be essential for, and not be in conflict with, the traditional way of living for reindeer herders. The findings of these studies build upon the thesis put forth by Hörnberg et al. (1999) which suggested that the spruce-Cladina forests were altered by past land management and specifically repeated use of fire. The recurrent fires led to the loss of nutrient capital on these sites and thereby reducing the potential for pines to regenerate and recolonize these otherwise open forest stands.

This is further www.selleck.co.jp/products/Temsirolimus.html supported by previous findings on the black spruce-Cladina forests within the permafrost zone of North America which suggest that repeated disturbance, predominantly fire, induced a change in structure, composition and function of boreal coniferous stands ( Girard et al., 2009, Payette et al., 2000 and Payette and Delwaide, 2003). Natural fire frequency due to lightning strikes in this region in northern Sweden is relatively low ( Granström, 1993) and historical fire intervals mainly driven by climate were likely 300 or more years ( Carcaillet et al., 2007). Human use of fire as a management tool apparently altered historical vegetative communities, reduced nutrient capital, and ultimately created conditions that have perpetuated the vegetative communities present in this region today. Even in subarctic areas of Fennoscandia, that are often considered to be the last wilderness of northern Europe, impact by low technology societies has consequently lead to profound changes in some ecosystems that were carefully selected due to some specific condition that made them manageable by simple means to serve a specific purpose; e.g. use of fire to provide winter grazing land.

Wilcoxon’s paired sample signed rank

Wilcoxon’s paired sample signed rank Selleckchem Everolimus test revealed that 6 of 11 DOM parameters differed between up and downstream of golf courses ( Fig. 4). Specifically, DOM downstream of golf courses was relatively higher in one microbial humic-like (C5, p = 0.001), one terrestrial humic-like (C2, p = 0.012), and protein-like (C7, p = 0.005) marker and lower in one microbial humic-like (C6, p = 0.024), one terrestrial humic-like (C3, p = 0.001) marker with an overall loss in the humic content of the DOM pool (HIX, p = 0.017). These differences were subtle and these patterns were

not evident for the multivariate DOM group. The DOM group was similar up and downstream of golf course facilities (Pillai’s T = 1.3, p = 0.276) but significantly different among streams (Pillai’s T = 6.8, p = 0.001; Fig. 2C). Post hoc comparison revealed that DOM characteristics at GC1 were significantly different than

GC3, GC4, and GC6. GC2 significantly differed from all streams, except GC1. DOM characteristics between GC3, GC4, GC5, and GC6 were similar ( Fig. 2C). Benthic parameters were more variable than water column parameters between streams and sampling points (Table 4). Leaf ergosterol content (a fungal biomass indicator) and epilithic algal biomass (Chlrock) ranged from 0.6 to 22.5 μg Erg. mg−1 AFDW leaf and click here 0.8 to 10.6 μg Chl a cm−2 rock, respectively. N2 flux and Rleaf ranged from 18.8 to 171.9 μg-N2 h−1 g−1AFDW leaf and 22.0 to 146.8 μg-O2 h−1 g−1AFDW leaf, respectively. k exhibited the least variance, ranging from 0.015 to 0.030 d−1. These benthic parameters were similar up and downstream of golf courses based on Wilcoxon’s paired sample rank tests ( Fig. 5). Closer inspection 3-mercaptopyruvate sulfurtransferase of these paired data, however, revealed that k, ergosterol, and Rleaf deviate from zero but in different directions among sites. These patterns were captured in the benthic multivariate group comparison, which had a significant interaction between stream and sampling

location (Pillai’s T = 1.95, p = 0.050; Fig. 2D). Trajectory analysis indicated that this interaction was significantly influenced by the magnitude and direction of the golf course response among and within streams ( Fig. 6). The magnitude (multivariate distance) between up and downstream sampling points differed between GC5 with GC2 (p = 0.05), GC3 (p = 0.07), and GC6 (p = 0.05). The direction of benthic multivariate change from up to downstream sampling locations differ between GC1 and GC5 (p = 0.06) and GC4 and GC6 (p = 0.05). The landscape group correlated positively with the benthic group (r = 0.30, p = 0.022). Water quality and DOM groups did not correlate with the benthic group. The best dimensional representation (partial least squares; PLS) of the landscape group and that of the benthic group correlated strongly (r = 0.90, p < 0.001; Fig. 7A).

Modern systems science is about the structured relationships amon

Modern systems science is about the structured relationships among objects and their connections that scientists perceive to be essential, as extracted from the complex messiness of total reality (and there is considerable metaphysical debate about what “total reality” is). By invoking systems Small Molecule Compound Library concepts scientists (e.g., physicists) can “predict” (really deduce from assumptions – there is no other

kind of deduction) logical consequences. Employing further presumptions (about the philosophically loaded issues involving the meaning of “time”) the systems scientist (e.g., the physicist) can equate the logical deduction from the antecedent to the consequent (“prediction”) to the state of the system at any past, present, or future moment in time, i.e., to say what the Earth (really the earth System) is, was, or will be. Substantive uniformitarianism (uniformities of kind, degree, rate, and state), which claims how the earth is supposed Selleck Anti-infection Compound Library to be, is logically

flawed, in that it states a priori part of what our scientific inquiries are meant to discover. In contrast, weaker forms of uniformitarianism (uniformities of methodology and process) were meant to provide regulative or guiding principles in regard to causal hypothesis generation. Such forms of uniformitarianism were not meant, in their original formulations, as means to predict (deduce) past or future system states. Uniformity of Law is a special case in that it makes substantive claim that is needed for all forms of science, notably physics, but this claim is merely one of parsimony (e.g., Goodman, 1967), another version which might claim that no extra, fancifull, or unknown causes need (or should) be invoked if known causes (those presently in operation and/or observed) will do the job. Prediction, in the sense of logical deduction (not in the sense of foretelling the future), is properly used in

Earth system science as a means of advancing scientific understanding. The goal of universal, necessary, and certain prediction may be to achieve the geoengineering of some future system state of the Anthropocene, if such a goal is deemed ethically acceptable by society. However, analytical prediction in systems science must always be regarded as a tool for advancing the continually developing state of understanding. As such, it is best combined with other tools for 3-mercaptopyruvate sulfurtransferase that quest. Knight and Harrison (2014) concluded that Earth’s past conditions, e.g., past interglacials, cannot provide exact analogs from which to predict (deduce) future conditions. However, this is because processes vary in their complex interactions with time, i.e., they evolve, and this occurs whether those processes are enhanced by human action or not. From a logical point of view, this is not a new problem that is uniquely associated with the Anthropocene; it has always been a logical defect with overly restrictive applications (generally substantive) of uniformitarian principles.

No staining corresponding to specific labeling was observed when

No staining corresponding to specific labeling was observed when primary antisera were omitted. In multiple labeling experiments using primary antibodies from different species, the lack of cross-reactivity of the secondary antibodies was consistently checked.

Images were obtained with a Zeiss AxioImager Z2 microscope coupled to a camera (Zeiss AxioCam MR3). Immunofluorescence images were acquired using a halogene HBO lamp associated with (470/40, 525/50), (545/25, 605/70) filter cubes for detection of Al488, Cy3 or DL549, Cy5, or DL649. Counts were performed manually. All selleck chemical results are given as percentages of total number of cells (Figure 1C) or as means of percentages ± SEM (Figures 3L and 3M), n being the number of mice per group. Forty-three neurons were reconstructed with a computer assisted system attached to a microscope (Neurolucida, MicroBrightfield). Out of those, 31 were included in the morphometric analysis. Morphological variables included: dendritic and axonal lengths, dendritic and axonal surfaces, and number of dendritic and axonal terminals. We also performed a Sholl analysis in order to determine the distribution of the number of axonal intersections with circles of increasing radius (20 μm steps) centered at the cell’s soma. Cluster analysis

for morphological data was performed using Statistica software. Our analysis was performed with Euclidean distances using Ward’s method. According to Ward’s method, cases are assigned to clusters so that the variance (sum of squared deviations from the mean) within each cluster is minimized. AZD6244 We used custom designed MATLAB software (Bonifazi et al., 2009) that allowed: (1) automatic identification of loaded cells; (2) measuring the average fluorescence transients from each cell as a function of time; (3) detecting the onsets and offsets of calcium signals; and (4) reconstructing the functional connectivity of the imaged network. Network synchronizations (GDPs) were detected as synchronous onsets peaks including more neurons

than expected by chance, Selleckchem CHIR 99021 as previously described (Bonifazi et al., 2009). In order to identify cells in the network responding to phasic stimulations, for each cell we first calculated the average fluorescence change across trials in a time window between −1 and +1 s centered on the time of the stimulus. Cross-correlation between the average calcium signal of the cell and the calcium signal of the stimulated cell was calculated at time lags varying between −1 and +1 s. If the maximum of the cross-correlation exceeded 0.5 and occurred at positive times, indicating that the activation of the cell followed the stimulation, the cell was considered as responding to the stimulation. In order to color-code the effective connectivity map, we built a matrix from the calcium image of the slice and we assigned to each cell its maximal cross-correlation value. The image was then convolved with a Gaussian of unitary amplitude and 8 μm radius.

However, we posit that the overall expansion of the entire volume

However, we posit that the overall expansion of the entire volume of the cortex, including its width, as well as potentially other brain regions, suggests that this particular gene is actually unlikely to be involved in the specific and selective

expansion of cortical surface area occurring in primate and human brain evolution. The cellular mechanism for the enormous cortical expansion in the surface area without a comparable increase in thickness has been first explained by the radial unit hypothesis (RUH) (Rakic, 1988). According to the RUH, tangential (horizontal) coordinates of cortical neurons are determined by the relative position of their precursor cells in the proliferative zone lining the cerebral ventricles, while their radial (vertical) position is determined by the time of their origin. Thus, the number of the radial ontogenetic columns determines the size of the cortical surface, whereas the number

www.selleckchem.com/products/BKM-120.html PS-341 solubility dmso of cells within the columns determines the thickness. This model frames the issue of the evolution of cerebral cortical size and its thickness in the context of understanding the mechanisms governing genetic regulation of cell number and their allocation to different regions (Casanova and Tillquist, 2008, Elsen et al., 2013, Hevner and Haydar, 2012 and Molnár, 2011). Furthermore, according to the RUH, the initial increase in the number of neural stem cells occurs by symmetrical divisions in the ventricular zone (VZ) before the onset of neurogenesis and the formation of the subventricular zone (SVZ) (Bystron et al., 2008, Rakic, 1988, Rakic, 2009 and Stancik et al., 2010). This highlights genes involved in the control of the duration and mode of cell division (symmetric/asymmetric) as important factors for cerebral expansion in evolution (Huttner and Kosodo, 2005 and Rakic, 2009). Finally, the manner by which a larger number of postmitotic cells migrate radially from the proliferative VZ/SVZ to become deployed in the cortical plate as a relatively thin sheet is a biological necessity that enables cortical expansion during

evolution (Heng et al., 2008, Noctor et al., 2001, Rakic, 1988, Rakic, 1995, Takahashi et al., 1999 and Yu et al., 2009). More recently, electroporation and transgenic from technologies show intermixing of the ontogenetic columns in the SVA that is necessary for the formation of functional columns with different compositions and constellations of cell types (Figure 1A; Torii et al., 2009). However, the relation of ontogenetic columns to functional columns of the adult cortex remains to be defined (e.g., Mountcastle, 1995). Since the length of the cell cycle is a major determinant of the number of cells produced, it is paradoxical that the duration of the cell cycle in primates is about five times longer than that in mouse (Kornack and Rakic, 1998 and Lukaszewicz et al., 2006).

In a subset of cells, we measured the SR95531-dependent increase

In a subset of cells, we measured the SR95531-dependent increase of spontaneous APs (from 7.4 ± 0.6 to 12.66 ± 1.2 Hz, n = 7, see Häusser and Clark, 1997) that we adjusted with DC current (7.4 ± 0.5 pA) to match the observed rate in control conditions. Experiments were performed using selleck screening library internal solutions with Alexa Fluor 488 or 568 hydrazide (100 μM; Life Technologies) or 0.2% biocytin. Slices were fixed in 4% paraformaldehyde for 1 hr and mounted with anti-fade reagent (ProLong Gold, Life Technologies), or

incubated with streptavidin-conjugated Alexa Fluor 647 prior to mounting. Digital images were acquired using a 20× (NA 0.85) oil-immersion objective on an Olympus FluoView 300 confocal microscope. Images were reconstructed in Neurolucida (MicroBrightField). Data was analyzed using AxoGraphX software. Changes

to basal spontaneous action potential rate were quantified as in Mittmann et al. (2005). Briefly, peristimulus Ibrutinib cost histograms (PSHs) were computed and integrated. A linear fit to the baseline of the integral was extrapolated over the entire sweep and subtracted from the integral to yield the cumulative spike probability plot. We averaged between 300–400 ms period after stimulation to measure the number of spikes evoked by the input. Data are displayed as means ± SEM, and significance was analyzed with two-tailed Student’s t tests (Microsoft Excel and GraphPad Prism). n values indicate number of cells. Spearman or Pearson correlations were used depending on the normality of the data. ANOVAs were followed by Bonferroni’s multiple comparison test unless noted. SR95531 (GABAAR antagonist, 5 μM), MRIP NBQX (AMPAR antagonist, 10 μM), AP5 (NMDAR antagonist,

100 μM), and QX314 (Na+-channel blocker, 5 mM) were obtained from Abcam. DL-TBOA (50 μM) was purchased from Tocris Bioscience. All other chemicals and compounds were obtained from Sigma or Fisher Scientific. This work was supported by NIH NS064025 (L.O.-W.) and NS065920 (J.I.W.). We thank Kamran Khodakhah, Ming-Chi Tsai, Anastassios Tzingounis, and members of the Wadiche laboratories for discussions and reading the manuscript. “
“Allosteric modulation can profoundly regulate the function of ion channels and G protein-coupled receptors in either a positive or negative direction (Conigrave and Franks, 2003; Schwartz and Holst, 2007) and is of increasing interest for both physiology and pharmacology. Benzodiazepines (BZs) act as allosteric modulators on type-A receptors for the inhibitory neurotransmitter γ-aminobutyric acid (GABA). BZs act as either positive allosteric modulators (PAMs) and prolong currents through GABAARs to increase the duration and strength of inhibitory signals, or as negative allosteric modulators (NAMs, or inverse agonists) (Sieghart, 1995).