However, one study showed that in the wild type flies, S aureus

However, one study showed that in the wild type flies, S. aureus elicited a strong induction of AMP genes, including cecropin A, drosomycin, and diptericin [27]. This study demonstrated that MRSA strains with different genetic backgrounds are capable of inducing the expression of these genes, with the highest expression level at 18 hours, and with a decrease or stabilization at 24 hours. The high virulence strains www.selleckchem.com/products/incb28060.html did not this website suppress AMP gene expression,

but rather induced AMP gene expression to the same extent that low virulence strains did. This finding is in contrast to previous observations in a P. aeruginosa – D. melanogaster infection model whereby a virulent P. aeruginosa strain suppressed or poorly elicited AMP gene expression, while the avirulent strain induced gene expression [28]. www.selleckchem.com/products/ve-822.html In the current study, the low virulence strain, M92, induced significantly less cecropin A1 expression at 18 hours post infection compared with the other strains (Figure 3C) even though M92 and CMRSA6 are both the low virulence strains. As described earlier, M92 is a colonization strain, isolated from health care workers and has never been associated with infection. This strain may have developed

the ability to tune down the host immune response thereby facilitating colonization rather than clearance by the host. Alternatively, this strain may have lost virulence

factors associated with inducing high levels of cecropin A1 in the flies. The mechanism for this observation requires further study. The mechanisms contributing to the virulence of S. aureus are likely determined by the genetic background of each strain as well by the specific combination of virulence genes. Previously, we have determined the presence of 34 virulence genes studied by PCR in MRSA strains, but no specific genes that were directly associated with the hypervirulence of USA300, USA400, and CMRSA2 were identified [6]. The different virulence between Pregnenolone these MRSA strains in the fly model may have resulted from differential bacterial virulence gene expression, as Loughman et al. have shown that differential bacterial virulence gene expression can be associated with different clinical outcomes during human infections [29]. In this study we determined the in vitro and in vivo expression levels of 5 common bacterial virulence genes, including 2 hemolysins (hla and hlg) and 3 exoenzymes (sak, hysA and sspA), involved in invasive S. aureus infection. Our results agreed with previous studies that hla, hlg, and sak, had higher gene expression levels in the stationary growth phase for all strains (Figure 4A) [21–23]. Other studies also noted that sspA was expressed more in the stationary phase [30], while hysA was expressed to a lesser degree [31].

Genes involved in

Genes involved in pyruvate synthesis All organisms considered in this study utilize the Embden-Meyerhof-Parnas pathway for conversion of glucose to PEP with the following notable variations. Alignments of key residues of phosphofructokinase (PFK) according to Bapteste et al.[74, 75], suggest that P. furiosus, Th. kodakaraensis, Cal. subterraneus subsp.

tengcongensis, E. harbinense, G. thermoglucosidasius, and B. cereus encode an ATP-dependent PFK, while Thermotoga, Caldicellulosiruptor, Clostridium, and Thermoanaerobacter species selleck inhibitor encode both an ATP-dependent PFK, as well as a pyrophosphate (PPi)-dependent PFK [74, 75] (Additional file 1). Furthermore, while bacteria catalyze the oxidation of glyceraldehyde-3-P to 3-phosphoglycerate (yielding NADH and ATP) with glyceraldehydes-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK), archea (P. furiosus and Th. kodakaraensis) preferentially

catalyze the same reaction via glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPFOR). This enzyme reduces ferredoxin (Fd) rather than NAD+ and selleck kinase inhibitor does not produce ATP [76]. In contrast to the generally CFTRinh-172 mw conserved gene content required for the production of PEP, a number of enzymes may catalyze the conversion of PEP to pyruvate [73] (Figure 1; Table 3). PEP can be directly converted into pyruvate via an ATP-dependent pyruvate kinase (PPK), or via an AMP-dependent pyruvate phosphate dikinase (PPDK). All strains considered in this review encode both ppk Methocarbamol and ppdk, with the exception

of C. thermocellum strains, which do not encode a ppk, and E. harbinense, G. thermoglucosidasius, and B. cereus, which do not encode ppdk. Given that the formation of ATP from ADP and Pi is more thermodynamically favorable than from AMP and PPi (△G°’ = 31.7 vs. 41.7 kJ mol-1), production of pyruvate via PPK is more favorable than via PPDK [21]. Table 3 Genes encoding proteins involved in interconversion of phosphenolpyruvate and pyruvate Organism Gene   eno ppk ppdk pepck oaadc mdh malE Standard free energy (ΔG°’) ND −31.4 −23.2 −0.2 −31.8 −29.7 −2.1 Ca. saccharolyticus DSM 8903 Athe_1403 Athe_1266 Athe_1409 Athe_0393 Athe_1316-1319   Athe_1062 Ca. bescii DSM 6725 Csac_1950 Csac_1831 Csac_1955 Csac_0274 Csac_2482-2485   Csac_2059 P. furiosus DSM 3638 PF0215 PF1188 PF0043 PF0289     PF1026   PF1641             Th. kodakaraensis KOD1 TK1497 TK0511 TK0200 TK1405     TK1963   TK2106   TK1292         T. neapolitana DSM 4359 CTN_1698 CTN_0477 CTN_0413       CTN_0126 T. petrophila RKU-1 Tpet_0050 Tpet_0716 Tpet_0652       Tpet_0379 T. maritima MSB8 TM0877 TM0208 TM0272       TM0542 Cal. subterraneus subsp. tengcongensis MB4A TTE1759 TTE1815 TTE0164 TTE1783     TTE2332       TTE0981         E. harbinense YUAN-3 T Ethha_2662 Ethha_0305         Ethha_0739 C. cellulolyticum H10 Ccel_2254 Ccel_2569 Ccel_2388 Ccel_0212 Ccel_1736-1738 Ccel_0137 Ccel_0138 C.

The antimicrobials were grouped into 8 convenient groups:- β-lact

The antimicrobials were grouped into 8 convenient groups:- β-lactams and β-lactamase inhibitors, aminoglycosides, (fluoro)quinolones, nitrofurantoin, chloramphenicol, sulphonamides, trimethoprim, and tetracyclines. Physical linkage amongst genetic elements Figure 1 illustrates the strategy used for interrogation for physical linkages amongst genetic elements while Figure 2 illustrates some of the genetic associations identified in this study. Majority (69%) of integrons containing 3’-CS were

physically linked to the Tn21 https://www.selleckchem.com/products/ly3039478.html transposon while 75% of those containing a sul3 gene at the 3’-terminal were linked to IS26. This element was also linked to 80% of integrons lacking the 3’-CS, Table 5. Forty AZD1480 manufacturer (40) isolates contained class 1 integrons linked to a single IS26 upstream the 5’-CS while

in 12 isolates the integrons was flanked by two IS26 elements. All ISCR1 were detected only in MDR strains and were flanked by a pair of class 1 integron 3’-CS. Close to 94% of Tn21 that were linked to an integron contained a complete set of transposition genes (tnpA, tnpR and tnpM) while 89% of Tn21 with an incomplete set of these genes did not contain an integron, Table 6. All the three class 2 integrons were physically linked to Tn7. Figure 1 Schematic diagram showing some of the strategies Nutlin-3a price for screening for various genetic elements and for interrogation between these elements and resistance genes. The targets of each primer and the direction of PCR amplification is shown using arrows. PCRs were done both in the 5’ and in the 3’ orientation for each pair of genes tested.

A: The strategy used for detection and characterization of class 1 integrons. B: The strategy used for detection and characterization of class 2 integrons and their physical linkage to Tn7. C: An example of the strategy used for analysis of physical linkages between Venetoclax solubility dmso class 1 integrons and Tn21 and to IS26. The primer positions for screening of Tn21 transposition genes. D and E: An example of the strategy used for analysis for physical linkages between integrons, ISCR1 and bla genes. F: An example of the strategy used for analysis for physical linkages between integrons, ISEcp1, IS26 and bla genes. These illustrations are based on PCR mapping data and not sequencing. Therefore, the sizes of each gene and the distances between any two genes are not drawn to scale. Figure 2 Schematic diagram illustrating examples of physical linkages amongst genetic elements and selected genes.

57 patients underwent open gastro-duodenal suture (85 1%) and six

57 patients underwent open gastro-duodenal suture (85.1%) and six patients underwent laparoscopic gastro-duodenal suture (8.1%). Two (2.7%) patients underwent gastro-duodenal resection. The nine remaining patients (12.2%) received conservative treatment (non-operative treatment, surgical drainage). Among the 44 patients with small bowel perforations, 35 underwent open small bowel resection (79.5%) and two (4.5%) underwent laparoscopic small bowel resection. The remaining seven patients were treated non-surgically. Among the 75 patients with colonic non-diverticular perforation, 25 patients (33.3%) underwent open Hartmann resection, 27 (36%) underwent open resection with anastomosis

and without stoma protection, and 11 underwent open resection with stoma protection (14.7%). Source control EGFR inhibitor was effective in 838 patients and ineffective IACS-10759 research buy in 57 patients. Microbiology Intraperitoneal specimens

were collected from 586 (64.2%) patients. Intraperitoneal specimens were isolated from 453 of the 753 patients with community-acquired intra-abdominal infections (60.2%). Among the remaining 159 patients with healthcare-associated intra-abdominal infections, intraperitoneal specimens were collected from 133 patients (83.6%). The major pathogens involved in intra-abdominal infections were found to be Enterobacteriaceae. The aerobic bacteria identified in samples of peritoneal fluid are reported in Table 4. Table 4 Aerobic bacteria in the peritoneal fluids

Total 697 (100%) Aerobic Gram negative bacteria 492 (70,6%) Escherichia coli 314 (45%) (Escherichia coli resistant to third generation cephalosporins) 35 (5%) click here Klebsiella pneuumoniae 55 (7,9%) (Klebsiella pneumoniae resistant to third generation cephalosporins) 19 (2,7%) Enterobacter 28 (4%) Proteus 14 (2%) Pseudomonas 32 (4,6%) Others 49 (7%) Aerobic Gram positive bacteria 205 (29,7%) Enterococcus faecalis 70 (10%) Enterococcus faecium 31 (4,4%) Staphylococcus Aureus 22 (3,1%) Streptococcus spp. 48 (6,9%) Others 34 (4,9%) In community-acquired IAIs, Escherichia coli ESBL isolates comprised 8.1% (21/259) of all Escherichia coli isolates, while Klebsiella pneumoniae ESBL isolates represented 19.3% (6/31) of all Klebsiella pneumoniae isolates. ESBL-positive Enterobacteriaceae increased TCL in the group of patients with healthcare-associated infections. Escherichia coli ESBL-positive isolates comprised 25.4% (14/55) of all Escherichia coli isolates, while Klebsiella pneumoniae ESBL isolates made up 54.2% (13/24) of total Klebsiella pneumoniae isolates. There were two isolates of Klebsiella pneumoniae that proved to be resistant to Carbapenems. Both of these Carbapenem-resistant Klebsiella pneumoniae isolates were acquired in an in-hospital intensive care unit. Among the identified aerobic gram-negative isolates, there were 32 isolates of Pseudomonas aeruginosa (4.6% among aerobic bacteria isolates).

To create high-quality ZnO NRs,

To create high-quality ZnO NRs, various techniques have been proposed, such as the aqueous hydrothermal growth [10], metal-organic chemical vapor deposition [17], vapor phase epitaxy [18], vapor phase transport [19], learn more and vapor–liquid-solid method [20]. Among these methods, the aqueous hydrothermal technique is an easy and convenient method for the cultivation of ZnO NRs. In addition, this technique had some promising advantages, like its capability for large-scale production at low temperature and the production of epitaxial, anisotropic ZnO NRs [21, 22]. By using this method and varying the chemical use, reaction temperature,

molarity, and pH of the solution, a variety of ZnO nanostructures can be formed, such as nanowires (NWs) [16, 23], nanoflakes [24], nanorods [25], nanobelts [26], and nanotubes [27]. In this study, we demonstrated a low-cost hydrothermal growth method to synthesize ZnO NRs on a Si substrate, with the use of different types of solvents. Ricolinostat molecular weight Moreover, the find more effects of the solvents on the structural and

optical properties were investigated. Studying the solvents is important because this factor remarkably affects the structural and optical properties of the ZnO NRs. To the best of our knowledge, no published literature is available that analyzed the effects of different seeded layers on the structural and optical properties of ZnO NRs. Moreover, a comparison of such NRs with the specific models of the refractive index has not been published. Methods ZnO seed solution preparation Homogenous and uniform ZnO nanoparticles were deposited using the sol–gel spin coating method [28]. Before seed layer deposition, the ZnO solution was prepared using zinc acetate dihydrate [Zn (CH3COO)2 · 2H2O] as a precursor and monoethanolamine (MEA) as a stabilizer. In this study, methanol (MeOH), ethanol (EtOH), Tau-protein kinase isopropanol (IPA), and 2-methoxyethanol (2-ME) were used as solvents.

All of the chemicals were used without further purification. ZnO sol (0.2 M) was obtained by mixing 4.4 g of zinc acetate dihydrate with 100 ml of solvent. To ensure that the zinc powder was completely dissolved in the solvent, the mixed solution was stirred on a hot plate at 60°C for 20 min. Then, 1.2216 g of MEA was gradually added to the ZnO solution, while stirring constantly at 60°C for 2 h. The milky solution was then changed into a homogenous and transparent ZnO solution. The solution was stored for 24 h to age at room temperature (RT) before deposition. ZnO seed layer preparation In this experiment, a p-type Si (100) wafer was used as the substrate. Prior to the ZnO seed layer deposition process, the substrate underwent standard cleaning processes, in which it was ultrasonically cleaned with hydrochloric acid, acetone, and isopropanol.

Next, 1 µl of each product was used in a touchdown PCR reaction w

Next, 1 µl of each product was used in a touchdown PCR reaction with primers 338f-518R with a profile of 5 min at 95 °C, 10 cycles of 30 s at 95 °C, 45 s at (60 °C – 0.5 °C), 1 min 30 find more s at 72 °C, 13 cycles of 30 s at 95 °C, 45 s at 55 °C, 1 min 30 s at 72 °C and a final elongation step of 65 min at 72 °C. This PCR-DGGE provided a similar profile as the non-nested PCR-DGGE, but the eukaryotic 18S rRNA gene was absent. The empty lane of the no-template control indicated the absence of contamination. The Bio-Rad DCode system was used for the analysis. Gels with 8 % (w/v) polyacrylamide

were ran in 1 x TAE (40 mM Tris-Cl, 20 mM glacial acetic acid, 1 mM disodium

EDTA.2H2O, pH 7.4) with a denaturing gradient of 45 to 60 % (100 % denaturant contains 7 M urea and 40% formamide) for 16 h at 38 V. Gels were stained with SYBR-Green and visualized under UV light (Isogen ProXima 16 Phi system, Isogen Life Science, Sint-Pieters-Leeuw, Belgium). To analyze the different bands of the DGGE-pattern, bands were excised from gel, and washed for three times in sterile water. DNA was then eluted from the gel by heating at 37 °C with 100 µl of sterile water; 1 µl was used for reamplification. PCR-products were cloned in the pGEM-T vector, reamplified using primer pair 338F-518R and run AZD1080 cost on a PCR-DGGE gel to discriminate the different bands. Plasmids corresponding to bands of interest were sent to LGC genomics for sequencing. Fluorescence in situ hybridisation The co-localization of Rickettsia and Wolbachia in the reproductive tissues was confirmed with a fluorescent in situ hybridization (FISH). The analysis was carried out following the protocol of Crotti et al. [45] click here for whole-mounted samples with slight selleck products modifications. Ovaries of infected and cured M. pygmaeus females were collected in a drop of 1 x PBS under a stereomicroscope, fixed for 1 h in 4 % paraformaldehyde in 1 x PBS and washed three times with

1 x PBS. The ovaries were then incubated for 1 min in a 100 µg/ml pepsin solution and washed again three times with 1 x PBS and one time with the hybridization buffer without probe (2 x SSC, 50 % formamide). Hybridization was carried out overnight at 46°C in hybridization buffer with 10 pmol/ml fluorescent probe. The next day, samples were washed in hybridization buffer without probe, two times in 0.1 x SSC and two times in 1 x PBS. Subsequently, the samples were whole-mounted with Vectashield Mounting Medium (Vector Labs, Burlingame, CA, USA) and images were acquired using a Nikon A1R confocal microscope, mounted on a Nikon Ti body, using a 60 x (NA1.4) oil objective.

To avoid these problems, we recommend that athletes need to pract

To avoid these problems, we recommend that athletes need to practice their dietary strategy before the event testing the tolerance of all products that they will use during the race. In addition, like muscle skeletal adaptations induce by physical

training, adequate nutritional training -ingestion of small and frequent amounts of food and fluids during exercise- may induce adaptations of the digestive system and reduce the risk of gastro-intestinal distress [31]. Table 6 Main food and beverages sources selleckchem of energy and nutrients during the event. Food Energy contribution (%) Pasta and rice (with tomato or oil olive and cheese) 25.0 Sport drinks 13.8 Fluid yogurt 12.3 Caffeinated drinks (Cola and Red

Bull) 8.5 Fruits (Banana, apple, peach and pear) 5.6 Cakes 5.1 Meat (Chicken and ham) 4.6 Sport Bars 4.1 Sport Gels 3.6 Bread 3.3 Fruit juice 2.9 Dried fruits (almonds and nuts) 2.2 Cereals 2.0 Milk 1.9 Tuna 0.4 Others (protein supplements, coffee, soy milk, sugar, etc) 4.7 Regarding protein recommendations (1.2 to 1.7 g/kg of body mass/day) [11], we found that almost all Ralimetinib supplier athletes consumed an adequate amount of this macronutrient. However, although protein is not an essential substrate used to provide energy, it could play an important role during longer events. Several studies have suggested that a carbohydrate/protein Tyrosine-protein kinase BLK ratio around 4:1 can enhance glycogen recovery, as well as protein balance, tissue repair and adaptations involving synthesis of new protein [35, 36]. These findings are interesting for ultra-endurance athletes competing in team relay events because the nutritional goal of them is to promote and accelerate the recovery of their endogenous glycogen stores and fluid replenishment after every work effort. However, the ingestion of carbohydrate/protein ratio of 4:1 in competition like the

current event induces higher protein consumption. For example, applying this ratio to this study, it was estimated that adequate protein consumption would have to be ~ 236 g (~ 3.6 g/kg body mass). In the present study, only two cyclists were able to consume amounts of protein like this. Furthermore, apart of these supposed benefits of carbohydrate and protein combination, it should be also taken in account that protein intake is associated with www.selleckchem.com/products/ldk378.html greater satiety and a reduced ad libitum energy intake in humans [33]. Therefore, further studies are needed to analyze whether an increase of protein intake above the current recommendations (1.2 to 1.7 g/kg of body mass/day) may induce benefits in longer and high-intensity sport events. Lastly, fat intake in these athletes was low in comparison with previous studies involving also cyclists during team relay events [26].

Conclusions The research presented here generated random InlA var

Conclusions The research selleck kinase inhibitor presented here generated random InlA variants with enhanced invasion into the CT-26 cell line most likely through an increased affinity for mCDH1. Novel mutations in InlA were readily identified from the random mutagenesis approach and a number (including the N259Y mutation) are worthy of click here further study. The approach used here indicates that other random or targeted mutagenesis strategies may uncover mutations that further enhance protein-ligand binding.

In particular we suggest that screening approaches such as biopanning [37] using the first extra cellular domain of mCDH1 as bait or a site-saturation mutagenesis approach (the analysis of all amino acid combinations at a single residue) [38] may uncover further potential interactions. We have demonstrated that the newly created strain, EGD-e InlA m * does not have an enhanced affinity for human cells (unlike the predecessor EGD-InlAm) while displaying highly reproducible oral infections in the mouse model. The use of this murinized L. monocytogenes strain will prove a useful tool in analysing the gastrointestinal phase of listeriosis. The BVD-523 mouse additional residues identified here as playing a role in InlA::CDH1 interactions will inform our ongoing efforts to create

safer ‘murinised’ versions of L. monocytogenes which will help us to combat this often fatal pathogen. Acknowledgements The authors would like to thank Richard O’Kennedy and Stephen Harty for generously supplying the InlA

monoclonal antibody. We would buy Docetaxel like to acknowledge the funding received from the Irish Government under the National Development Plan 2000-2006 and the funding of the Alimentary Pharmabiotic Centre by the Science Foundation of Ireland Centres for Science Engineering and Technology (CSET) programme. References 1. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P: Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 1991, 65:1127–1141.PubMedCrossRef 2. Bierne H, Sabet C, Personnic N, Cossart P: Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes . Microbes Infect 2007, 9:1156–1166.PubMedCrossRef 3. Mengaud J, Lecuit M, Lebrun M, Nato F, Mazie JC, Cossart P: Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect Immun 1996, 64:5430–5433.PubMed 4. Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P: Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 1997, 65:5309–5319.PubMed 5. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P: E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 1996, 84:923–932.PubMedCrossRef 6.

d- Different biovars give different results, nr- not reported **

d- Different biovars give different results, nr- not reported. **As determined in this study. Genomic comparison Comparisons of proteins predicted for isolate 4A and T. phagedenis F0421, whose sequence was obtained from the human microbiome project, made using the RAST server showed a high degree of similarity. At the amino acid level, approximately 86% of the proteins predicted for T. phagedenis F0421 demonstrated >95% identity to proteins encoded by genes identified in isolate 4A. Over 50% of the encoded proteins examined demonstrate >99.5% identity (data not shown).

Results from comparisons made using Genome-To-Genome Distance Calculator (GGDC) appear in Table 4. Comparison of genomic contigs from isolate 4A and GDC-0449 chemical structure Treponema phagedenis F0421 selleck products using either BLAT or BLAST analysis indicate that isolate 4A is Ricolinostat >70% similar to F0421 and should not be considered a new species. These comparisons along with the global RAST comparison (4A to F0421) are in agreement that the two isolates are highly similar and should most likely be treated as the same species.

Results further indicate that isolate 4A is <70% similar to other fully sequenced Treponema species available in Genbank, including T. succinifaciens, T. azotonutricium, T. primita, T. brennaborense, T. denticola, T. paraluiscuniculi, and T. pallidum. Table 4 Comparison of Isolate 4A to other treponemes using Genome-To-Genome Distance Calculator ( http://​ggdc.​gbdp.​org/​ )

Reference Sequence† Comparison Program DDH% estimate** Treponema phagedenis Cisplatin F0421* 2.83 Mb, AEFH00000000.1 BLAT 82.11 Treponema phagedenis F0421* 2.83 Mb, AEFH00000000.1 NCBI-BLAST 84.59 Treponema succinifaciens DSM 2489 “” 52.5 Complete chromosome, 2.73 Mb, NC_015385.1 Treponema azotonutricium ZAS 9 “” 47.15 Complete chromosome, 3.85 Mb, NC_015577.1 Treponema primitia ZAS 2 “” 45.7 Complete chromosome, 4.05 Mb, NC_015578.1 Treponema brennaborense DSM 12 “” 35.64 Complete chromosome, 3.05 Mb, NC_015500.1 Treponema denticola ATCC 35405 “” 29.34 Complete chromosome, 2.84 Mb, NC_002967.9 Treponema paraluiscuniculi Cuniculi A “” 25.82 Complete chromosome, 1.13 Mb, NC_015714.1 Treponema pallidum subsp. pallidum SS14 “” 25.75 Complete chromosome, 1.14 Mb, NC_010741.1 †All comparisons used 60 Contigs assembled for Isolate 4A as Query and report results using Formula 2 (Identities/HSP length). **Regression based. DNA-DNA Hybridization (DDH%) estimates ≤70% indicate organisms compared represent different species. Estimates >70% indicate organisms represent same species. *277 Contigs for Treponema phagedenis F0412 were used as reference sequence. Discussion Treponema spirochetes have been found in many species of animals in close association with their host, with distinct species colonizing genitalia, gastrointestinal tracts and oral cavity. Treponema spirochetes can co-exist as harmless commensals (e.g., T. refringens, T.