1988a); they also display long tails outside the principal absorb

1988a); they also display long tails outside the principal absorbance bands, which originate Pritelivir in vitro from differential scattering of left and right circularly polarized beams (Garab et al. 1988b). We stress that the same type of samples such as those of large disordered LHCII aggregates (Simidjev et al. 1997) or thylakoids that are suspended in low ionic strength hypotonic media (Garab et al. 1991) (see also Fig. 3, dashed

curve), exhibit no psi-type CD but similarly intense (but not differential) light scattering. Theory predicts that the magnitude of the psi-type CD signal is controlled by the volume (size), chromophore density, and pitch of the helically organized macrodomain (Kim et al. 1986). For the size dependency, Barzda et al. (1994) have provided clear evidence for it, using lamellar aggregates of LHCII.

The intensity of the psi-type CD was gradually decreased by mild detergent treatment, which was accompanied by a gradual decrease of the diamagnetic susceptibility; this latter quantity evidently depends on the size and the order of the components in the aggregates. At the same time, in photosynthesis, large aggregates can serve as the basis for long-distance migration Doramapimod of the excitation energy, which might be important in energy supply for the reaction centers and its down-regulation via non-photochemical quenching. Psi-type CD has been shown to depend on the macro-organization of the pigment system. LHCII and LHCII-only domains (cf. Dekker and Boekema 2005) have been shown to play significant roles in this organization (Garab and Mustárdy 1999; Holm et al. 2005). Using minor antenna mutants, the role of ordered Obatoclax Mesylate (GX15-070) arrays of LHCII–PSII super-complexes has been demonstrated with the aid of CD measurements on leaves and isolated thylakoid membranes, and electron microscopy on PSII membranes (Kovács et al. 2006). In Arabidopsis mutants, the level

of PsbS protein correlated with the amplitude of the psi-type CD, which is consistent with the notion that PsbS regulates the interaction between LHCII and PSII in the grana membranes (Kiss et al. 2008). No systematic study has been conducted in algal cells, but it is clear that the chiral macro-organization features vary from species to species (or perhaps genera to genera). Only relatively weak psi-type CD could be identified in the Chla/Chlb/Chl/c containing alga Mantoniella squamata (Prasinophyceae) (Goss et al. 2000). Whole cells and isolated chloroplasts of the Chl c-containing alga Pleurochloris meiringensis (Xanthophycea) exhibit intense psi-type bands (Büchel and Garab 1997). Whole cells of the diatom Ilomastat clinical trial Phaeodactylum tricornutum, containing fucoxanthin-Chl a/Chlc proteins as the main light-harvesting antenna complexes, appear to show intense psi-type CD (Szabó et al. 2008).

Sensors 10:10040–10068PubMedCentralPubMed

Sensors 10:10040–10068PubMedCentralPubMed Liproxstatin-1 datasheet Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356PubMedCentralPubMed Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73:273–277PubMed Berera R, van Grondelle R, Kennis JTM (2009) Ultrafast transient absorption spectroscopy: principles and application tot photosynthetic systems. Photosynth Res 101:105–118PubMedCentralPubMed Betemps DL, Fachinello JC, Galarca SP, Portela NM, Remorini D, Massai R, Agati G (2011) Non-destructive evaluation of ripening and quality traits in

apples using a multiparametric fluorescence sensor. J Sci Food Agric 92:1855–1864 Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen U-P, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53PubMed Bilger W, Björkman O (1990) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185PubMed Bilger W, Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and

Malva parviflora L. Planta 184:226–234PubMed Bilger W, Schreiber U (1986) Energy-dependent PF-573228 datasheet quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308PubMed Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763 Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504PubMed Boisvert S, Joly D, MK-0457 Carpentier R (2006) Quantitative analysis of the experimental O–J–I–P chlorophyll fluorescence induction

kinetics: apparent activation energy and origin of each step. FEBS J 273:4770–4777PubMed Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, Tripodi M, Bassi R, Caffarri S (2008) Enzalutamide purchase The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol 84:1359–1370PubMed Bonora A, Pancaldi S, Gualandri R, Fasulo MP (2000) Carotenoid and ultrastructure variations in plastids of Arum italicum Miller fruit during maturation and ripening. J Exp Bot 51:873–884PubMed Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681 Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II.