On the other hand, a cluster of spore germination genes were dete

On the other hand, a cluster of spore germination genes were determined near the termination concerning of the replication site (including genes from the ger and ype operons) among other genes widespread in the genome. Three clusters of sporulation genes were allocated at contigs 1, 10 and 13 (including genes from spoII, spoV, yaa and sig operons). Responses against toxic metal(oid)s in L. sphaericus OT4b.31 could be controlled by efflux pumps related genes in clusters found in contigs. Putative coding sequence order is as follows: yozA��czcD��csoR��copZA (contig 1, H131_00045: H131_00065); nikABC��oppD��nikD (contig 17, H131_11103:H131_11123); cadC-like��cadA (contig 24, H131_17086:H131_17081); arsRBC �C putative extracellular secreted protein CDS �C arsR-like��arsR-like�� putative excinuclease CDS (contig 18, H131_11998:H131_12028).

The function of YozA is still unknown [59], but is similar to CzrA and CadC belonging to the ArsR transcriptional family regulators. YozA, CsoR (from the copper-sensitive operon), CadC-like and ArsR proteins seem to be the direct regulators of each cluster. At least one additional copy of ChrA, CzrB and CzcD CDSs were found. Upstream the nik cluster, we could not find transcriptional regulators. In summary, L. sphaericus OT4b.31 has protein encoding sequences probably involved in the resistance against Cd, Zn, Co, Cu, Ni, Cr, and As. In fact, prior reports of resistance to toxic metals [16,17] in L. sphaericus OT4b.31 may be explained due to participation of heavy-metal resistance proteins. Strain OT4b.

31 probably has a diverse defense repertoire according to the following responses and predicted genes: bacitracin stress responses, genes bceBASR and yvcPQRS; multidrug resistance, MATE (multidrug and toxin extrusion) family efflux pump genes ydhE/norM and acrB; antibiotics resistance, genes vanRSW, tetP-like group II, fusA (elongation factor G), fosB, blaZ and ampC-like. Based in the KEGG analysis, some predicted proteins might participate in peripheral pathways for the degradation of benzoate, aminobenzoate, quinate, toluene, naphthalene, geraniol, limonene, pinene, chloroalkane, chloroalkene, styrene, ethilbenzene, caprolactam and atrazine compounds, and biosynthesis of streptomycin, novobiocin, zeatin, ansamycins, penicillin and cephalosporins. Conclusions The native Colombian strain Lysinibacillus sphaericus OT4b.

31, isolated from beetle larvae, is classified between DNA similarity groups III and IV. A comparison of the chromosomal sequences of strain OT4b.31 and its closest complete genome sequence, L. sphaericus C3-41, demonstrates the presence of only a few similar regions with syntenial rearrangements, and no prophage or putative mosquitocidal toxins are shared. Drug_discovery Sphaericolysin B354 and the coleopteran toxin Sip1A were predicted in the strain OT4b.31, a finding which may be useful not only in bioremediation of polluted environments, but also for biological control of agricultural pests.

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>