Unassociated protein ACTB was examined to exclude unspecific bind

Unassociated protein ACTB was examined to exclude unspecific bind by KPNA2 antibody. (b) The expression of KPNA2 (left panel) and PLAG1 (right panel) total protein in control Huh7 cells (GFP) or Huh7 cells transfected with KPNA2 expression plasmids (Clone1 and Clone2). (c) The expression of KPNA2 (left CX-6258 molecular weight panel) and PLAG1(right panel) total protein in control SMMC7721 cells (Scramble) or SMMC7721 cells transfected with KPNA2 siRNAs (Si144 and Si467). (d) Nucleus accumulation of KPNA2 could be manipulated by KPNA2 expression plasmids and siRNAs. (e) The nucleus accumulation (up panel) and cytoplasm expression (down panel) of PLAG1 in SMMC7721 and

Huh7 cells. ACTB and Lamin B antibody were applied for endogenous antibody for total and nuclearnucleus protein determination respectively. (f) In situ observation of the nucleus accumulation of PLAG1 in Huh7 cell line was investigated by immunocytochemistry. Nucleus was stained by DAPI. Cells with KPNA2 overexpression was marked by the white arrows. (g-h) Expression of transcriptional targets of PLAG1 in SMMC7721 and Huh7 cells. Data represents as mean ± s.d. ★ represents statistical significance. Nucleus and cytoplasm protein was extracted from HCC cell lines with

KPNA2 manipulation and were applied for detection of PLAG1 protein. The results indicated that nucleus expression of PLAG1 could be significantly increased in Huh7 cells with KPNA2 overexpression. check details Besides, inhibition of KPNA2 could remarkably decrease the expression level of PLAG1 in nucleus (Figure 1e). Conversely, PLAG1 protein in cytoplasm was slightly decreased after ectopic over-expression of KPNA2 and was mildly increased by inhibition of KPNA2 (Figure 1e), which were consistent with the result that PLAG1 expression remained unchanged after manipulation of KPNA2 (Figure 1b-c). Immunocytochemistry was applied to observe the increased nucleus shuttling of PLAG1 in Huh7 cells with

over-expressed KPNA2 compared with control Huh7 cells (Figure 1f). We then sought to validate the association between KPNA2 and PLAG1 by investigating the transcriptional regulation of downstream molecular by PLAG1. Several definite targets of PLAG1 were analyzed by qRT-PCR. Remarkably, oxyclozanide we observed that the expression of IGF-II, CRABP2 and CRLF1 were significantly inhibited by KPNA2 siRNAs in SMMC7721 cells (Figure 1g). Increment of IGF-II, CRABP2 and CRLF1 were induced by KPNA2 over-expression in Huh7 cells (Figure 1h). Furthermore, we transfected PLAG1 siRNA into Huh7 cells of KPNA2 over-expressed clones and found that transcriptional up-regulation of IGF-II, CRABP2 and CRLF1 were significantly counteracted by PLAG1 inhibition (Figure 1h). In sum, we revealed that KPNA2 might act as a vehicle to transport PLAG1 into nucleus to regulate downstream effectors.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>