The disruption of ORF0 and ORF1 did not affect mangotoxin product

The disruption of ORF0 and ORF1 did not affect mangotoxin production. These two genes may belong to another independent gene cluster located close to the mgo operon that is not involved in mangotoxin production. ORF2 transcription was independent of the mgo operon, and ORF2

is homologous to the GntR family of transcriptional regulators. This family of regulatory proteins consists of the N-terminal HTH region of GntR-like bacterial transcription factors. An effector-binding/oligomerisation domain is usually located at the C-terminus [22]. In the deposited genomes of other P. syringae pathovars, the genes in this family are often located close to gene clusters that are homologous Palbociclib to the mgo operon. The relationship between ORF2 and the regulation of the mgo operon remains

unclear. In the present study, we observed promoter P mgo expression in the ORF2 mutant (UMAF0158::ORF2) when it was grown in minimal medium at 22°C but not at 28°C, in agreement with the production of mangotoxin by the ORF2 insertional mutant. These data suggest that ORF2 is not involved in mangotoxin production but provide no direct information on the possible influence of ORF2 on the mgo operon with respect to variations in temperature. Our results demonstrate that the DNA sequence downstream of ORF2 constitutes an operon. Ma et al. [23] first established the correlation between the presence of a Shine-Dalgarno sequence, also known as PF-02341066 mouse a ribosomal binding site (RBS), and translational initiation, the expression levels Sodium butyrate of the predicted genes and operon structure [23]. We found Selisistat clinical trial putative RBSs in almost all of the genes in the putative mgo operon. Only the mgoA gene, in which the start codon overlaps with the stop codon of mgoC, does contain a potential RBS sequence. mgoC and mgoA may share the same RBS, and post-translational

changes may separate the two proteins; this situation could explain the absence of a putative RBS for the mgoA gene. The mutagenesis and bioinformatics analysis of each gene in the mgo operon provided insight into their relationship to mangotoxin production. The disruption of mgoB did not abrogate mangotoxin production; however, the production decreased noticeably compared with the wild-type strain. Protein domain searches indicated that mgoB is similar to haem oxygenase. This enzyme is a member of a superfamily represented by a multi-helical structural domain consisting of two structural repeats that is found in both eukaryotic and prokaryotic haem oxygenases and in proteins that enhance the expression of extracellular enzymes [24]. The disruption mutants of the next three genes, mgoC, mgoA and mgoD, were unable to produce mangotoxin, indicating that these genes are essential for mangotoxin production. A similar conclusion was reached by Aguilera et al.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>