Nucleic Acids Res 2000,

Nucleic Acids Res 2000, Cell Cycle inhibitor 28:1838–1847.PubMedCrossRef 47. Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer

BE, Piper PW, Kuchler K: Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae . Mol Biol Cell 2004, 15:706–720.PubMedCrossRef 48. Cotter PA, Miller JF: In vivo and ex vivo regulation of bacterial virulence gene expression. Current Opinion in Microbiology 1998, 1:17–26.PubMedCrossRef 49. Cheng Z, Wang X, Rikihisa Y: Regulation of type IV MK2206 secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J Bacteriol 2008, 190:2096–2105.PubMedCrossRef 50. Thomas V, Samanta S, Wu C, Berliner N, Fikrig E: Anaplasma phagocytophilum modulates gp91phox gene expression through altered interferon regulatory factor 1 and PU.1 levels and binding of CCAAT displacement protein. Infect Immun 2005, 73:208–218.PubMedCrossRef 51. Wang X, Cheng Z, Zhang C, Kikuchi T, Rikihisa Y: Anaplasma phagocytophilum p44 mRNA expression is differentially regulated in mammalian and tick host cells: involvement of the DNA binding protein ApxR. J Bacteriol 2007, 189:8651–8659.PubMedCrossRef 52. Wang X, Kikuchi T, Rikihisa Y: Proteomic identification

of a novel Anaplasma phagocytophilum DNA binding protein that regulates a putative transcription factor. J Bacteriol 2007, 189:4880–4886.PubMedCrossRef A-1210477 purchase 53.

Yuan G, Wong SL: Isolation and characterization of Bacillus subtilis groE Sunitinib cost regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. The Journal of Bacteriology 1995, 177:6462–6468. 54. Zuber U, Schumann W: CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis . The Journal of Bacteriology 1994, 176:1359–1363. 55. Berg D, Barrett K, Chamberlin M: Purification of two forms of Escherichia coli RNA polymerase and of sigma component. In Methods in Enzymology Nucleic Acids, Part D. Edited by: Lawrence Grossman KM. Academic Press; 1971:506–519.CrossRef 56. Chen SM, Popov VL, Feng HM, Walker DH: Analysis and ultrastructural localization of Ehrlichia chaffeensis proteins with monoclonal antibodies. Am J Trop Med Hyg 1996, 54:405–412.PubMed 57. Reddy GR, Streck CP: Variability in the 28-kDa surface antigen protein multigene locus of isolates of the emerging disease agent Ehrlichia chaffeensis suggests that it plays a role in immune evasion. Molecular Cell Biology Research Communications 1999, 1:167–175.PubMedCrossRef 58. Wainwright LA, Pritchard KH, Seifert HS: A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol Microbiol 1994, 13:75–87.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>