(C) 2012 Elsevier Ireland Ltd All rights reserved “
“The no

(C) 2012 Elsevier Ireland Ltd. All rights reserved.”
“The nonstructural 4B (NS4B) protein of hepatitis C virus (HCV) plays a central role in the formation of the HCV replication complex. To gain insight into the role of charged selleck residues for NS4B function

in HCV RNA replication, alanine substitutions were engineered in place of 28 charged residues residing in the N- and C-terminal cytoplasmic domains of the NS4B protein of the HCV genotype 1b strain Con1. Eleven single charged-to-alanine mutants were not viable, while the remaining mutants were replication competent, albeit to differing degrees. By selecting revertants, second-site mutations were identified for one of the lethal NS4B mutations. Second-site mutations mapped to NS4B and partially suppressed the lethal replication phenotype. Further selleckchem analyses showed that three NS4B mutations disrupted the formation of putative replication complexes, one mutation altered the stability

of the NS4B protein, and cleavage at the NS4B/5A junction was significantly delayed by another mutation. Individual charged-to-alanine mutations did not affect interactions between the NS4B and NS3-4A proteins. A triple charged-to-alanine mutation produced a temperature-sensitive replication phenotype with no detectable RNA replication at 39 degrees C, demonstrating that conditional mutations can be obtained by altering the charge characteristics of NS4B. Finally, NS4B mutations dispensable for efficient Con1 RNA replication were tested in

the context of the chimeric genotype 2a virus, but significant defects in infectious-virus production were not detected. Taken together, these findings highlight the importance of charged residues for multiple NS4B functions in HCV RNA replication, including the formation of a functional replication complex.”
“Tuberculosis is an ancient disease that remains a significant global health problem. Because many membrane and membrane-associated proteins of this pathogen represent potential targets for drugs, diagnostic probes or vaccine components, we have analysed Mycobacterium bovis, bacillus Calmette-Guerin (BCG) Baricitinib substrain Moreau, using Triton X-114 for extraction of lipophilic proteins, followed by identification with LC coupled MS/MS. We identified 351 different proteins in total, and 103 (29%) were predicted as integral membrane proteins with at least one predicted transmembrane region and another 84 (23.9%) proteins had a positive grand average of hydropathicity (GRAVY) value, indicating increased probability for membrane association. Altogether 43 predicted lipoproteins (Lpps) were identified which is close to 50% of the total number of Lpps in the genome. Fifty-four proteins, including twenty-four predicted integral membrane proteins and seven predicted Lpps are described for the first time.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>